微分積分 例

極限を求める xが(x^3+27)/(x+3)の-3に近づく極限
Step 1
ロピタルの定理を当てはめます。
タップして手順をさらに表示してください…
分子と分母の極限値を求めます。
タップして手順をさらに表示してください…
分子と分母の極限値をとります。
分子の極限値を求めます。
タップして手順をさらに表示してください…
極限を求めます。
タップして手順をさらに表示してください…
に近づいたら、極限で極限の法則の和を利用して分解します。
極限べき乗則を利用して、指数から極限値外側に移動させます。
に近づくと定数であるの極限値を求めます。
に代入し、の極限値を求めます。
答えを簡約します。
タップして手順をさらに表示してください…
乗します。
をたし算します。
分母の極限値を求めます。
タップして手順をさらに表示してください…
極限を求めます。
タップして手順をさらに表示してください…
に近づいたら、極限で極限の法則の和を利用して分解します。
に近づくと定数であるの極限値を求めます。
に代入し、の極限値を求めます。
をたし算します。
による除算を含む式です。式は未定義です。
未定義
による除算を含む式です。式は未定義です。
未定義
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
分子と分母の微分係数を求めます。
タップして手順をさらに表示してください…
分母と分子を微分します。
総和則では、に関する積分はです。
のとき、であるというべき乗則を使って微分します。
について定数なので、についての微分係数はです。
をたし算します。
総和則では、に関する積分はです。
のとき、であるというべき乗則を使って微分します。
について定数なので、についての微分係数はです。
をたし算します。
で割ります。
Step 2
極限を求めます。
タップして手順をさらに表示してください…
の項はに対して一定なので、極限の外に移動させます。
極限べき乗則を利用して、指数から極限値外側に移動させます。
Step 3
に代入し、の極限値を求めます。
Step 4
答えを簡約します。
タップして手順をさらに表示してください…
乗します。
をかけます。
Cookie & プライバシー
当社のウェブサイトで最高の経験をしていただくため、本ウェブサイトはCookieを利用しています。
詳細情報