微分積分 例

極大値と極小値を求める y=x^4-4x^3
Step 1
を関数で書きます。
Step 2
関数の一次導関数を求めます。
タップして手順をさらに表示してください…
微分します。
タップして手順をさらに表示してください…
総和則では、に関する積分はです。
のとき、であるというべき乗則を使って微分します。
の値を求めます。
タップして手順をさらに表示してください…
に対して定数なので、に対するの微分係数はです。
のとき、であるというべき乗則を使って微分します。
をかけます。
Step 3
関数の二次導関数を求めます。
タップして手順をさらに表示してください…
総和則では、に関する積分はです。
の値を求めます。
タップして手順をさらに表示してください…
に対して定数なので、に対するの微分係数はです。
のとき、であるというべき乗則を使って微分します。
をかけます。
の値を求めます。
タップして手順をさらに表示してください…
に対して定数なので、に対するの微分係数はです。
のとき、であるというべき乗則を使って微分します。
をかけます。
Step 4
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
Step 5
一次導関数を求めます。
タップして手順をさらに表示してください…
一次導関数を求めます。
タップして手順をさらに表示してください…
微分します。
タップして手順をさらに表示してください…
総和則では、に関する積分はです。
のとき、であるというべき乗則を使って微分します。
の値を求めます。
タップして手順をさらに表示してください…
に対して定数なので、に対するの微分係数はです。
のとき、であるというべき乗則を使って微分します。
をかけます。
に関するの一次導関数はです。
Step 6
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
一次導関数をに等しくします。
で因数分解します。
タップして手順をさらに表示してください…
で因数分解します。
で因数分解します。
で因数分解します。
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
に等しくし、を解きます。
タップして手順をさらに表示してください…
に等しいとします。
についてを解きます。
タップして手順をさらに表示してください…
方程式の両辺の平方根を取り、左辺の指数を消去します。
を簡約します。
タップして手順をさらに表示してください…
に書き換えます。
正の実数と仮定して、累乗根の下から項を取り出します。
プラスマイナスです。
に等しくし、を解きます。
タップして手順をさらに表示してください…
に等しいとします。
方程式の両辺にを足します。
最終解はを真にするすべての値です。
Step 7
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
Step 8
値を求める臨界点です。
Step 9
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
Step 10
二次導関数の値を求めます。
タップして手順をさらに表示してください…
各項を簡約します。
タップして手順をさらに表示してください…
を正数乗し、を得ます。
をかけます。
をかけます。
をたし算します。
Step 11
をもつ点が1点以上または未定義の二次導関数があるので、一次導関数検定を当てはめます。
タップして手順をさらに表示してください…
一次導関数または未定義になる値の周囲で、を分離区間に分割します。
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
式の変数で置換えます。
結果を簡約します。
タップして手順をさらに表示してください…
各項を簡約します。
タップして手順をさらに表示してください…
乗します。
をかけます。
乗します。
をかけます。
からを引きます。
最終的な答えはです。
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
式の変数で置換えます。
結果を簡約します。
タップして手順をさらに表示してください…
各項を簡約します。
タップして手順をさらに表示してください…
乗します。
をかけます。
乗します。
をかけます。
からを引きます。
最終的な答えはです。
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
タップして手順をさらに表示してください…
式の変数で置換えます。
結果を簡約します。
タップして手順をさらに表示してください…
各項を簡約します。
タップして手順をさらに表示してください…
乗します。
をかけます。
乗します。
をかけます。
からを引きます。
最終的な答えはです。
の周囲で一次導関数の符号が変化しなかったので、これは極大値または極小値ではありません。
極大値または極小値ではありません
の周囲で一次導関数の符号が負から正に変化したので、は極小値です。
は極小値です
は極小値です
Step 12
Cookie & プライバシー
当社のウェブサイトで最高の経験をしていただくため、本ウェブサイトはCookieを利用しています。
詳細情報