微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3
はについて定数なので、についての微分係数はです。
ステップ 1.1.4
とをたし算します。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
の各項をで割り、簡約します。
ステップ 2.2.1
の各項をで割ります。
ステップ 2.2.2
左辺を簡約します。
ステップ 2.2.2.1
の共通因数を約分します。
ステップ 2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.1.2
をで割ります。
ステップ 2.2.3
右辺を簡約します。
ステップ 2.2.3.1
をで割ります。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
を正数乗し、を得ます。
ステップ 4.1.2.2
とをたし算します。
ステップ 4.2
点のすべてを一覧にします。
ステップ 5