微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3
はについて定数なので、についての微分係数はです。
ステップ 1.1.4
とをたし算します。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
の各項をで割り、簡約します。
ステップ 2.2.1
の各項をで割ります。
ステップ 2.2.2
左辺を簡約します。
ステップ 2.2.2.1
の共通因数を約分します。
ステップ 2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.1.2
をで割ります。
ステップ 2.2.3
右辺を簡約します。
ステップ 2.2.3.1
をで割ります。
ステップ 2.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.4
を簡約します。
ステップ 2.4.1
をに書き換えます。
ステップ 2.4.2
実数と仮定して、累乗根の下から項を取り出します。
ステップ 3
微分係数がに等しくなるような値はです。
ステップ 4
微分係数をまたは未定義にする点を求めた後、が増加・減少している場所を確認する間隔はです。
ステップ 5
ステップ 5.1
式の変数をで置換えます。
ステップ 5.2
結果を簡約します。
ステップ 5.2.1
を乗します。
ステップ 5.2.2
にをかけます。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 6
ステップ 6.1
式の変数をで置換えます。
ステップ 6.2
結果を簡約します。
ステップ 6.2.1
1のすべての数の累乗は1です。
ステップ 6.2.2
にをかけます。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 7
関数が増加する区間と減少する区間を記載します。
で増加
で減少
ステップ 8