Kalkulus Contoh

Cari Turunan Third f(x)=xe^x
Step 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Step 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Evaluasi .
Ketuk untuk lebih banyak langkah...
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Tambahkan dan .
Susun kembali suku-suku.
Susun kembali faktor-faktor dalam .
Step 3
Tentukan turunan ketiganya.
Ketuk untuk lebih banyak langkah...
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Evaluasi .
Ketuk untuk lebih banyak langkah...
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Evaluasi .
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Tambahkan dan .
Susun kembali suku-suku.
Susun kembali faktor-faktor dalam .
Step 4
Turunan ketiga dari terhadap adalah .
Cookie & Privasi
Situs web ini menggunakan cookie untuk memastikan Anda mendapatkan pengalaman terbaik di situs web kami.
Informasi Lebih Lanjut