Masukkan soal...
Kalkulus Contoh
Langkah 1
Tentukan turunan pertamanya.
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Evaluasi .
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Evaluasi .
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Diferensialkan menggunakan Aturan Konstanta.
Karena konstan terhadap , turunan dari terhadap adalah .
Tambahkan dan .
Tentukan turunan keduanya.
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Evaluasi .
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Evaluasi .
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Turunan kedua dari terhadap adalah .
Langkah 2
Atur turunan keduanya sama dengan .
Kurangkan dari kedua sisi persamaan tersebut.
Bagi setiap suku pada dengan dan sederhanakan.
Bagilah setiap suku di dengan .
Sederhanakan sisi kirinya.
Batalkan faktor persekutuan dari .
Batalkan faktor persekutuan.
Bagilah dengan .
Sederhanakan sisi kanannya.
Bagilah dengan .
Langkah 3
Substitusikan dalam untuk menemukan nilai dari .
Ganti variabel dengan pada pernyataan tersebut.
Sederhanakan hasilnya.
Sederhanakan setiap suku.
Naikkan menjadi pangkat .
Kalikan dengan .
Naikkan menjadi pangkat .
Kalikan dengan .
Sederhanakan dengan menambahkan dan mengurangkan.
Tambahkan dan .
Kurangi dengan .
Jawaban akhirnya adalah .
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 5
Ganti variabel dengan pada pernyataan tersebut.
Sederhanakan hasilnya.
Kalikan dengan .
Tambahkan dan .
Jawaban akhirnya adalah .
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 6
Ganti variabel dengan pada pernyataan tersebut.
Sederhanakan hasilnya.
Kalikan dengan .
Tambahkan dan .
Jawaban akhirnya adalah .
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 7
Titik belok adalah titik pada kurva ketika kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Titik belok dalam kasus ini adalah .
Langkah 8