Aljabar Contoh

Cari Nilai Maksimum/Minimumnya x^3+x^2-x-1
Step 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Evaluasi .
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Tambahkan dan .
Step 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Evaluasi .
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Evaluasi .
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Tambahkan dan .
Step 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Step 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Evaluasi .
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Kalikan dengan .
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Karena konstan terhadap , turunan dari terhadap adalah .
Tambahkan dan .
Turunan pertama dari terhadap adalah .
Step 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Buat turunan pertamanya agar sama dengan .
Faktorkan dengan pengelompokan.
Ketuk untuk lebih banyak langkah...
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Ketuk untuk lebih banyak langkah...
Faktorkan dari .
Tulis kembali sebagai ditambah
Terapkan sifat distributif.
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Ketuk untuk lebih banyak langkah...
Kelompokkan dua suku pertama dan dua suku terakhir.
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Atur sama dengan .
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Tambahkan ke kedua sisi persamaan.
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Bagilah setiap suku di dengan .
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Batalkan faktor persekutuan.
Bagilah dengan .
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Atur sama dengan .
Kurangkan dari kedua sisi persamaan tersebut.
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Step 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Step 7
Titik kritis untuk dievaluasi.
Step 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Step 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Faktorkan dari .
Batalkan faktor persekutuan.
Tulis kembali pernyataannya.
Tambahkan dan .
Step 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Step 11
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Ganti variabel dengan pada pernyataan tersebut.
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Terapkan kaidah hasil kali ke .
Satu dipangkat berapa pun sama dengan satu.
Naikkan menjadi pangkat .
Terapkan kaidah hasil kali ke .
Satu dipangkat berapa pun sama dengan satu.
Naikkan menjadi pangkat .
Menentukan penyebut persekutuan.
Ketuk untuk lebih banyak langkah...
Kalikan dengan .
Kalikan dengan .
Kalikan dengan .
Kalikan dengan .
Tulis sebagai pecahan dengan penyebut .
Kalikan dengan .
Kalikan dengan .
Susun kembali faktor-faktor dari .
Kalikan dengan .
Kalikan dengan .
Gabungkan pembilang dari penyebut persekutuan.
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Kalikan dengan .
Tambahkan dan .
Kurangi dengan .
Kurangi dengan .
Pindahkan tanda negatif di depan pecahan.
Jawaban akhirnya adalah .
Step 12
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Step 13
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Kalikan dengan .
Tambahkan dan .
Step 14
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Step 15
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Ganti variabel dengan pada pernyataan tersebut.
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Naikkan menjadi pangkat .
Naikkan menjadi pangkat .
Kalikan dengan .
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Tambahkan dan .
Tambahkan dan .
Kurangi dengan .
Jawaban akhirnya adalah .
Step 16
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
adalah maksimum lokal
Step 17
Cookie & Privasi
Situs web ini menggunakan cookie untuk memastikan Anda mendapatkan pengalaman terbaik di situs web kami.
Informasi Lebih Lanjut