समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
Step 1
किसी भी के लिए, ऊर्ध्वाधर अनंतस्पर्शी पर आते हैं, जहां एक पूर्णांक है. , के लिए मूलभूत अवधि का उपयोग करके के लिए ऊर्ध्वाधर अनंतस्पर्शी पता करें. स्पर्शरेखा फलन के अंदर सेट करें, , के लिए के बराबर यह पता लगाने के लिए कि के लिए ऊर्ध्वाधर अनंतस्पर्शी कहां है.
के लिए हल करें.
समीकरण के दोनों पक्षों को से गुणा करें.
समीकरण के दोनों पक्षों को सरल करें.
बाईं ओर को सरल बनाएंं.
को सरल करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
का उभयनिष्ठ गुणनखंड रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
दाईं ओर को सरल बनाएंं.
को सरल करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
और को मिलाएं.
व्यंजक को सरल बनाएंं.
को से गुणा करें.
भिन्न के सामने ऋणात्मक ले जाएँ.
स्पर्शरेखा फलन के अंदर को के बराबर सेट करें.
के लिए हल करें.
समीकरण के दोनों पक्षों को से गुणा करें.
समीकरण के दोनों पक्षों को सरल करें.
बाईं ओर को सरल बनाएंं.
को सरल करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
का उभयनिष्ठ गुणनखंड रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
दाईं ओर को सरल बनाएंं.
को सरल करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
और को मिलाएं.
की मूल अवधि पर होगी, जहां और ऊर्ध्वाधर अनंतस्पर्शी हैं.
अवधि पता करके पता लगाएँ कि ऊर्ध्वाधर अनंतस्पर्शी कहाँ विद्यमान हैं.
लगभग है जो सकारात्मक है इसलिए निरपेक्ष मान हटा दें
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
के लिए ऊर्ध्वाधर अनंतस्पर्शी , और प्रत्येक पर होते हैं, जहां एक पूर्णांक है.
स्पर्शरेखा में केवल ऊर्ध्वाधर अनंतस्पर्शी होते हैं.
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
कोई तिरछी अनंतस्पर्शी नहीं
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं
कोई तिरछी अनंतस्पर्शी नहीं
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
Step 2
आयाम, अवधि, चरण बदलाव और ऊर्ध्वाधर बदलाव को पता करने के लिए प्रयोग किए जाने वाले चर को पता करने के लिए रूप का प्रयोग करें.
Step 3
चूंकि फलन के ग्राफ़ में अधिकतम या न्यूनतम मान नहीं है, इसलिए आयाम के लिए कोई मान नहीं हो सकता है.
आयाम: कोई नहीं
Step 4
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
लगभग है जो सकारात्मक है इसलिए निरपेक्ष मान हटा दें
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
Step 5
फलन के चरण बदलाव की गणना से की जा सकती है.
चरण बदलाव:
चरण बदलाव के समीकरण में और के मान बदलें.
चरण बदलाव:
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण बदलाव:
को से गुणा करें.
चरण बदलाव:
चरण बदलाव:
Step 6
त्रिकोणमितीय फलन के गुणों की सूची बनाइए.
आयाम: कोई नहीं
आवर्त:
चरण बदलाव: कोई नहीं
ऊर्ध्वाधर बदलाव: कोई नहीं
Step 7
त्रिकोणमितीय फलन को आयाम, अवधि, चरण बदलाव, ऊर्ध्वाधर बदलाव और बिंदुओं का उपयोग करके ग्राफ किया जा सकता है.
ऊर्ध्वाधर अनंतस्पर्शी: जहां एक पूर्णांक है
आयाम: कोई नहीं
आवर्त:
चरण बदलाव: कोई नहीं
ऊर्ध्वाधर बदलाव: कोई नहीं
Step 8