ट्रिगोनोमेट्री उदाहरण

Step 1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का वर्गमूल लें.
Step 2
का कोई भी मूल होता है.
Step 3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
Step 4
को हल करने के लिए प्रत्येक हल सेट करें.
Step 5
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का सटीक मान है.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
गुणा करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
सरल करें.
और स्टेप्स के लिए टैप करें…
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
और को मिलाएं.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
में से घटाएं.
और स्टेप्स के लिए टैप करें…
और को पुन: क्रमित करें.
में से घटाएं.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
गुणा करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
Step 6
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का सटीक मान है.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
गुणा करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
तीसरे और चौथे चतुर्थांश में ज्या फलन ऋणात्मक होता है. दूसरा हल पता करने के लिए, संदर्भ कोण पता करने के लिए हल को से घटाएं. इसके बाद, तीसरे चतुर्थांश में हल पता करने के लिए इस संदर्भ कोण को में जोड़ें.
दूसरा हल निकालने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
में से घटाएं.
का परिणामी कोण धनात्मक है, से कम है और के साथ कोटरमिनल है.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
गुणा करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
धनात्मक कोण प्राप्त करने के लिए प्रत्येक ऋणात्मक कोण में जोड़ें.
और स्टेप्स के लिए टैप करें…
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
और को मिलाएं.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
को के बाईं ओर ले जाएं.
में से घटाएं.
नए कोणों की सूची बनाएंं.
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
Step 7
सभी हलों की सूची बनाएंं.
, किसी भी पूर्णांक के लिए
Step 8
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
कुकीज़ और गोपनीयता
यह वेबसाइट कुकीज़ का इस्तेमाल यह सुनिश्चित करने के लिए करती है कि आपको हमारी वेबसाइट पर सबसे अच्छा अनुभव मिले।
अधिक जानकारी