ट्रिगोनोमेट्री उदाहरण

Step 1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
Step 2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को सरल करें.
और स्टेप्स के लिए टैप करें…
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
गुणा करें.
और स्टेप्स के लिए टैप करें…
और को मिलाएं.
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
Step 3
समीकरण के दोनों पक्षों को से गुणा करें.
Step 4
वितरण गुणधर्म लागू करें.
Step 5
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
Step 6
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
Step 7
गुणा करें.
और स्टेप्स के लिए टैप करें…
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
Step 8
पाइथागोरस सर्वसमिका लागू करें.
Step 9
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
Step 10
चूंकि घातांक बराबर होते हैं, समीकरण के दोनों पक्षों के घातांकों के आधार समान होने चाहिए.
Step 11
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
निरपेक्ष मान समीकरण को निरपेक्ष मान पट्टियों के बिना चार समीकरणों के रूप में फिर से लिखें.
सरलीकरण के बाद, हल करने के लिए केवल दो अद्वितीय समीकरण हैं.
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
दो फलनों के बराबर होने के लिए, प्रत्येक के तर्क समान होने चाहिए.
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
समीकरण के दोनों पक्षों से घटाएं.
में से घटाएं.
चूंकि , समीकरण हमेशा सत्य होगा.
सभी वास्तविक संख्या
सभी वास्तविक संख्या
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
वाले सभी पदों को समीकरण के बाईं ओर ले जाएँ.
और स्टेप्स के लिए टैप करें…
समीकरण के दोनों पक्षों में जोड़ें.
और जोड़ें.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का सटीक मान है.
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
में से घटाएं.
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
को से विभाजित करें.
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
Step 12
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
कुकीज़ और गोपनीयता
यह वेबसाइट कुकीज़ का इस्तेमाल यह सुनिश्चित करने के लिए करती है कि आपको हमारी वेबसाइट पर सबसे अच्छा अनुभव मिले।
अधिक जानकारी