समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
Step 1
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और के उभयनिष्ठ गुणनखंड को रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंडों को रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
Step 2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का वर्गमूल लें.
Step 3
को के रूप में फिर से लिखें.
का कोई भी मूल होता है.
को से गुणा करें.
भाजक को मिलाएं और सरल करें.
को से गुणा करें.
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
को के रूप में फिर से लिखें.
को के रूप में फिर से लिखने के लिए का उपयोग करें.
घात नियम लागू करें और घातांक गुणा करें, .
और को मिलाएं.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
घातांक का मान ज्ञात करें.
Step 4
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
Step 5
को हल करने के लिए प्रत्येक हल सेट करें.
Step 6
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
दाईं ओर को सरल बनाएंं.
का सटीक मान है.
पहले और चौथे चतुर्थांश में कोज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
को सरल करें.
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
न्यूमेरेटरों को जोड़ें.
और को मिलाएं.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
न्यूमेरेटर को सरल करें.
को से गुणा करें.
में से घटाएं.
का आवर्त ज्ञात करें.
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
को से विभाजित करें.
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
Step 7
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
दाईं ओर को सरल बनाएंं.
का सटीक मान है.
दूसरे और तीसरे चतुर्थांश में कोज्या फलन ऋणात्मक होता है. दूसरा हल ज्ञात करने के लिए, तीसरे चतुर्थांश में हल ज्ञात करने के लिए संदर्भ कोण को से घटाएं.
को सरल करें.
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
न्यूमेरेटरों को जोड़ें.
और को मिलाएं.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
न्यूमेरेटर को सरल करें.
को से गुणा करें.
में से घटाएं.
का आवर्त ज्ञात करें.
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
को से विभाजित करें.
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
Step 8
सभी हलों की सूची बनाएंं.
, किसी भी पूर्णांक के लिए
Step 9
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए