कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। y=x+1/x
Step 1
को एक फलन के रूप में लिखें.
Step 2
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
अवकलन करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
को के रूप में फिर से लिखें.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
पदों को पुन: व्यवस्थित करें
Step 3
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
को के रूप में फिर से लिखें.
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
की सभी घटनाओं को से बदलें.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
घात नियम लागू करें और घातांक गुणा करें, .
को से गुणा करें.
को से गुणा करें.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
में से घटाएं.
को से गुणा करें.
को से गुणा करें.
और जोड़ें.
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
सरल करें.
और स्टेप्स के लिए टैप करें…
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
और को मिलाएं.
और जोड़ें.
Step 4
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
Step 5
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
अवकलन करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
को के रूप में फिर से लिखें.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
पदों को पुन: व्यवस्थित करें
का पहला व्युत्पन्न बटे , है.
Step 6
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
पहले व्युत्पन्न को के बराबर सेट करें.
समीकरण के दोनों पक्षों से घटाएं.
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से गुणा करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
समीकरण को के रूप में फिर से लिखें.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
का कोई भी मूल होता है.
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
Step 7
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
को सरल करें.
और स्टेप्स के लिए टैप करें…
को के रूप में फिर से लिखें.
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
जोड़ या घटाव , है.
Step 8
मूल्यांकन के लिए क्रांतिक बिन्दु.
Step 9
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
Step 10
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
एक का कोई भी घात एक होता है.
को से विभाजित करें.
Step 11
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
Step 12
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
व्यंजक में चर को से बदलें.
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
और जोड़ें.
अंतिम उत्तर है.
Step 13
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
Step 14
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
को के घात तक बढ़ाएं.
को से विभाजित करें.
Step 15
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
Step 16
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
व्यंजक में चर को से बदलें.
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
में से घटाएं.
अंतिम उत्तर है.
Step 17
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
एक स्थानीय उच्चत्तम है
Step 18
कुकीज़ और गोपनीयता
यह वेबसाइट कुकीज़ का इस्तेमाल यह सुनिश्चित करने के लिए करती है कि आपको हमारी वेबसाइट पर सबसे अच्छा अनुभव मिले।
अधिक जानकारी