समस्या दर्ज करें...
कैलकुलस उदाहरण
Step 1
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
अवकलन करें.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
व्यंजक को सरल बनाएंं.
और जोड़ें.
को से गुणा करें.
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
में से घटाएं.
Step 2
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
अवकलन करें.
घातांक को में गुणा करें.
घात नियम लागू करें और घातांक गुणा करें, .
को से गुणा करें.
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
और जोड़ें.
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
की सभी घटनाओं को से बदलें.
अवकलन करें.
को से गुणा करें.
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
व्यंजक को सरल बनाएंं.
और जोड़ें.
को के बाईं ओर ले जाएं.
को से गुणा करें.
सरल करें.
वितरण गुणधर्म लागू करें.
वितरण गुणधर्म लागू करें.
न्यूमेरेटर को सरल करें.
प्रत्येक पद को सरल करें.
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
को के रूप में फिर से लिखें.
FOIL विधि का उपयोग करके का प्रसार करें.
वितरण गुणधर्म लागू करें.
वितरण गुणधर्म लागू करें.
वितरण गुणधर्म लागू करें.
समान पदों को सरल और संयोजित करें.
प्रत्येक पद को सरल करें.
घातांक जोड़कर को से गुणा करें.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
को के बाईं ओर ले जाएं.
को से गुणा करें.
में से घटाएं.
वितरण गुणधर्म लागू करें.
सरल करें.
को से गुणा करें.
को से गुणा करें.
वितरण गुणधर्म लागू करें.
सरल करें.
घातांक जोड़कर को से गुणा करें.
ले जाएं.
को से गुणा करें.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
घातांक जोड़कर को से गुणा करें.
ले जाएं.
को से गुणा करें.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
प्रत्येक पद को सरल करें.
को से गुणा करें.
को से गुणा करें.
घातांक जोड़कर को से गुणा करें.
को से गुणा करें.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
FOIL विधि का उपयोग करके का प्रसार करें.
वितरण गुणधर्म लागू करें.
वितरण गुणधर्म लागू करें.
वितरण गुणधर्म लागू करें.
समान पदों को सरल और संयोजित करें.
प्रत्येक पद को सरल करें.
घातांक जोड़कर को से गुणा करें.
ले जाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
घातांक जोड़कर को से गुणा करें.
ले जाएं.
को से गुणा करें.
को के घात तक बढ़ाएं.
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
और जोड़ें.
को से गुणा करें.
को से गुणा करें.
और जोड़ें.
और जोड़ें.
और जोड़ें.
में से घटाएं.
न्यूमेरेटर को सरल करें.
में से का गुणनखंड करें.
में से का गुणनखंड करें.
में से का गुणनखंड करें.
में से का गुणनखंड करें.
में से का गुणनखंड करें.
में से का गुणनखंड करें.
को के रूप में फिर से लिखें.
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
AC विधि का उपयोग करके का गुणनखंड करें.
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
की सभी घटनाओं को से बदलें.
को के रूप में फिर से लिखें.
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
भाजक को सरल करें.
को के रूप में फिर से लिखें.
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
उत्पाद नियम को पर लागू करें.
और के उभयनिष्ठ गुणनखंड को रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंडों को रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
और के उभयनिष्ठ गुणनखंड को रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंडों को रद्द करें.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
Step 3
का दूसरा व्युत्पन्न बटे , है.