समस्या दर्ज करें...
कैलकुलस उदाहरण
Step 1
पहला व्युत्पन्न पता करें.
अवकलन करें.
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
का मान ज्ञात करें.
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
स्थिरांक नियम का उपयोग करके अंतर करें.
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
और जोड़ें.
का पहला व्युत्पन्न बटे , है.
Step 2
पहले व्युत्पन्न को के बराबर सेट करें.
समीकरण के दोनों पक्षों में जोड़ें.
के प्रत्येक पद को से भाग दें और सरल करें.
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
का उभयनिष्ठ गुणनखंड रद्द करें.
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
को से विभाजित करें.
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का वर्गमूल लें.
को सरल करें.
को के रूप में फिर से लिखें.
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
Step 3
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
Step 4
पर मान ज्ञात करें.
को से प्रतिस्थापित करें.
सरल करें.
प्रत्येक पद को सरल करें.
को के घात तक बढ़ाएं.
को से गुणा करें.
संख्याओं को घटाकर सरल करें.
में से घटाएं.
में से घटाएं.
पर मान ज्ञात करें.
को से प्रतिस्थापित करें.
सरल करें.
प्रत्येक पद को सरल करें.
को के घात तक बढ़ाएं.
को से गुणा करें.
जोड़कर और घटाकर सरल करें.
और जोड़ें.
में से घटाएं.
सभी बिंदुओं को सूचीबद्ध करें.
Step 5