कैलकुलस उदाहरण

नति परिवर्तन बिन्दुओं का पता लगाएं f(x)=sin(x/2)
Step 1
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
के संबंध में का व्युत्पन्न है.
की सभी घटनाओं को से बदलें.
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
और को मिलाएं.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
के संबंध में का व्युत्पन्न है.
की सभी घटनाओं को से बदलें.
अवकलन करें.
और स्टेप्स के लिए टैप करें…
और को मिलाएं.
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
का दूसरा व्युत्पन्न बटे , है.
Step 2
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
दूसरे व्युत्पन्न को के बराबर सेट करें.
न्यूमेरेटर को शून्य के बराबर सेट करें.
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का सटीक मान है.
न्यूमेरेटर को शून्य के बराबर सेट करें.
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
समीकरण के दोनों पक्षों को से गुणा करें.
समीकरण के दोनों पक्षों को सरल करें.
और स्टेप्स के लिए टैप करें…
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
में से घटाएं.
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
लगभग है जो सकारात्मक है इसलिए निरपेक्ष मान हटा दें
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
को से गुणा करें.
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
उत्तरों को समेकित करें.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
Step 3
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
Step 4
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
Step 5
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
व्यंजक में चर को से बदलें.
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
का मान ज्ञात करें.
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
को से गुणा करें.
अंतिम उत्तर है.
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
Step 6
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
व्यंजक में चर को से बदलें.
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
का मान ज्ञात करें.
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को से विभाजित करें.
को से गुणा करें.
अंतिम उत्तर है.
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
Step 7
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को जोड़ से घटाव या घटाव से जोड़ में बदल देती है. इस मामले में विभक्ति बिंदु है.
Step 8
कुकीज़ और गोपनीयता
यह वेबसाइट कुकीज़ का इस्तेमाल यह सुनिश्चित करने के लिए करती है कि आपको हमारी वेबसाइट पर सबसे अच्छा अनुभव मिले।
अधिक जानकारी