कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=x^2-3x+6
Step 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
अवकलन करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
और जोड़ें.
Step 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
और जोड़ें.
Step 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
Step 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
अवकलन करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
और जोड़ें.
का पहला व्युत्पन्न बटे , है.
Step 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
पहले व्युत्पन्न को के बराबर सेट करें.
समीकरण के दोनों पक्षों में जोड़ें.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
Step 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
Step 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
Step 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
Step 9
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
Step 10
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
व्यंजक में चर को से बदलें.
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
उत्पाद नियम को पर लागू करें.
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
गुणा करें.
और स्टेप्स के लिए टैप करें…
और को मिलाएं.
को से गुणा करें.
भिन्न के सामने ऋणात्मक ले जाएँ.
सामान्य भाजक पता करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
को भाजक वाली भिन्न के रूप में लिखें.
को से गुणा करें.
को से गुणा करें.
को से गुणा करें.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
में से घटाएं.
और जोड़ें.
अंतिम उत्तर है.
Step 11
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
Step 12
कुकीज़ और गोपनीयता
यह वेबसाइट कुकीज़ का इस्तेमाल यह सुनिश्चित करने के लिए करती है कि आपको हमारी वेबसाइट पर सबसे अच्छा अनुभव मिले।
अधिक जानकारी