कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये y=x^3+x^2-5x-2
Step 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
अवकलन करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
और जोड़ें.
का पहला व्युत्पन्न बटे , है.
Step 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
पहले व्युत्पन्न को के बराबर सेट करें.
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
में से का गुणनखंड करें.
को जोड़ के रूप में फिर से लिखें
वितरण गुणधर्म लागू करें.
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
पहले दो पदों और अंतिम दो पदों को समूहित करें.
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
को के बराबर सेट करें.
समीकरण के दोनों पक्षों में जोड़ें.
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
को के बराबर सेट करें.
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
समीकरण के दोनों पक्षों से घटाएं.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
भिन्न के सामने ऋणात्मक ले जाएँ.
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
Step 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
Step 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
को से प्रतिस्थापित करें.
सरल करें.
और स्टेप्स के लिए टैप करें…
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
एक का कोई भी घात एक होता है.
एक का कोई भी घात एक होता है.
को से गुणा करें.
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
और जोड़ें.
में से घटाएं.
में से घटाएं.
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
को से प्रतिस्थापित करें.
सरल करें.
और स्टेप्स के लिए टैप करें…
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
घातांक वितरण करने के लिए घात नियम का उपयोग करें.
और स्टेप्स के लिए टैप करें…
उत्पाद नियम को पर लागू करें.
उत्पाद नियम को पर लागू करें.
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
घातांक वितरण करने के लिए घात नियम का उपयोग करें.
और स्टेप्स के लिए टैप करें…
उत्पाद नियम को पर लागू करें.
उत्पाद नियम को पर लागू करें.
को के घात तक बढ़ाएं.
को से गुणा करें.
को के घात तक बढ़ाएं.
को के घात तक बढ़ाएं.
गुणा करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
और को मिलाएं.
को से गुणा करें.
सामान्य भाजक पता करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
को से गुणा करें.
को से गुणा करें.
को भाजक वाली भिन्न के रूप में लिखें.
को से गुणा करें.
को से गुणा करें.
के गुणनखंडों को फिर से क्रमित करें.
को से गुणा करें.
को से गुणा करें.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
को से गुणा करें.
को से गुणा करें.
को से गुणा करें.
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
और जोड़ें.
और जोड़ें.
में से घटाएं.
सभी बिंदुओं को सूचीबद्ध करें.
Step 5
कुकीज़ और गोपनीयता
यह वेबसाइट कुकीज़ का इस्तेमाल यह सुनिश्चित करने के लिए करती है कि आपको हमारी वेबसाइट पर सबसे अच्छा अनुभव मिले।
अधिक जानकारी