कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=x^2e^x
Step 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
सरल करें.
और स्टेप्स के लिए टैप करें…
पदों को पुन: व्यवस्थित करें
गुणनखंडों को में पुन: क्रमित करें.
Step 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
को से गुणा करें.
सरल करें.
और स्टेप्स के लिए टैप करें…
वितरण गुणधर्म लागू करें.
और जोड़ें.
और स्टेप्स के लिए टैप करें…
ले जाएं.
और जोड़ें.
पदों को पुन: व्यवस्थित करें
गुणनखंडों को में पुन: क्रमित करें.
Step 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
Step 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
सरल करें.
और स्टेप्स के लिए टैप करें…
पदों को पुन: व्यवस्थित करें
गुणनखंडों को में पुन: क्रमित करें.
का पहला व्युत्पन्न बटे , है.
Step 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
पहले व्युत्पन्न को के बराबर सेट करें.
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
में से का गुणनखंड करें.
में से का गुणनखंड करें.
में से का गुणनखंड करें.
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
को के बराबर सेट करें.
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
को के बराबर सेट करें.
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
को के बराबर सेट करें.
समीकरण के दोनों पक्षों से घटाएं.
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
Step 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
Step 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
Step 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
Step 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
तक बढ़ाई गई कोई भी चीज़ होती है.
को से गुणा करें.
को से गुणा करें.
तक बढ़ाई गई कोई भी चीज़ होती है.
को से गुणा करें.
तक बढ़ाई गई कोई भी चीज़ होती है.
को से गुणा करें.
संख्याओं को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
और जोड़ें.
और जोड़ें.
Step 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
Step 11
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
व्यंजक में चर को से बदलें.
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
तक बढ़ाई गई कोई भी चीज़ होती है.
को से गुणा करें.
अंतिम उत्तर है.
Step 12
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
Step 13
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
को के घात तक बढ़ाएं.
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
और को मिलाएं.
को से गुणा करें.
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
और को मिलाएं.
भिन्न के सामने ऋणात्मक ले जाएँ.
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
और को मिलाएं.
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
में से घटाएं.
और जोड़ें.
भिन्न के सामने ऋणात्मक ले जाएँ.
Step 14
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
Step 15
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
व्यंजक में चर को से बदलें.
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
को के घात तक बढ़ाएं.
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
और को मिलाएं.
अंतिम उत्तर है.
Step 16
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
एक स्थानीय उच्चत्तम है
Step 17
कुकीज़ और गोपनीयता
यह वेबसाइट कुकीज़ का इस्तेमाल यह सुनिश्चित करने के लिए करती है कि आपको हमारी वेबसाइट पर सबसे अच्छा अनुभव मिले।
अधिक जानकारी