समस्या दर्ज करें...
एलजेब्रा उदाहरण
Step 1
Multiply each term by a factor of that will equate all the denominators. In this case, all terms need a denominator of .
Step 2
का सबसे लघुत्तम सामान्य भाजक (LCD) बनाने के लिए व्यंजक को के गुणनखंड से गुणा करें.
Step 3
को के बाईं ओर ले जाएं.
Step 4
को से विभाजित करें.
को से गुणा करें.
Step 5
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
Step 6
का सटीक मान है.
Step 7
तीसरे और चौथे चतुर्थांश में ज्या फलन ऋणात्मक होता है. दूसरा हल पता करने के लिए, संदर्भ कोण पता करने के लिए हल को से घटाएं. इसके बाद, तीसरे चतुर्थांश में हल पता करने के लिए इस संदर्भ कोण को में जोड़ें.
Step 8
में से घटाएं.
का परिणामी कोण धनात्मक है, से कम है और के साथ कोटरमिनल है.
Step 9
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
आवर्त काल के लिए सूत्र में को से बदलें.
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
को से विभाजित करें.
Step 10
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
न्यूमेरेटरों को जोड़ें.
और को मिलाएं.
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
न्यूमेरेटर को सरल करें.
को से गुणा करें.
में से घटाएं.
नए कोणों की सूची बनाएंं.
Step 11
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए