Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Schritt 2.1
Setze in die Gleichung ein. Das macht die Quadratformel leicht anzuwenden.
Schritt 2.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 2.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 2.7
Rücksubstituiere den tatsächlichen Wert von in die gelöste Gleichung.
Schritt 2.8
Löse die erste Gleichung nach auf.
Schritt 2.9
Löse die Gleichung nach auf.
Schritt 2.9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.9.2
Vereinfache .
Schritt 2.9.2.1
Schreibe als um.
Schritt 2.9.2.1.1
Faktorisiere aus heraus.
Schritt 2.9.2.1.2
Schreibe als um.
Schritt 2.9.2.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.9.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.9.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.9.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.9.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.10
Löse die zweite Gleichung nach auf.
Schritt 2.11
Löse die Gleichung nach auf.
Schritt 2.11.1
Entferne die Klammern.
Schritt 2.11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.11.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.11.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.11.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.11.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.12
Die Lösung von ist .
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 5
Bestimme den Definitionsbereich und den Wertebereich.
Definitionsbereich:
Wertebereich:
Schritt 6