Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=7-x^2
Step 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Gemäß der Summenregel ist die Ableitung von nach .
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Berechne .
Tippen, um mehr Schritte zu sehen ...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Subtrahiere von .
Step 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Step 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Step 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Gemäß der Summenregel ist die Ableitung von nach .
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Berechne .
Tippen, um mehr Schritte zu sehen ...
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Subtrahiere von .
Die erste Ableitung von nach ist .
Step 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Setze die erste Ableitung gleich .
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Teile jeden Ausdruck in durch .
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Kürze den gemeinsamen Faktor.
Dividiere durch .
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Dividiere durch .
Step 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Step 7
Kritische Punkte zum auswerten.
Step 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Step 9
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Step 10
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Mutltipliziere mit .
Addiere und .
Die endgültige Lösung ist .
Step 11
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
Step 12
Cookies und Datenschutz
Diese Website verwendet Cookies, um sicherzustellen, dass du das beste Erlebnis auf unserer Website erhältst.
Mehr Informationen