Gib eine Aufgabe ein ...
Algebra Beispiele
Step 1
Gemäß der Summenregel ist die Ableitung von nach .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Addiere und .
Step 2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Step 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Step 4
Bestimme die erste Ableitung.
Gemäß der Summenregel ist die Ableitung von nach .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Addiere und .
Die erste Ableitung von nach ist .
Step 5
Setze die erste Ableitung gleich .
Teile jeden Ausdruck in durch und vereinfache.
Teile jeden Ausdruck in durch .
Vereinfache die linke Seite.
Kürze den gemeinsamen Faktor von .
Kürze den gemeinsamen Faktor.
Dividiere durch .
Vereinfache die rechte Seite.
Dividiere durch .
Ziehe die Kubikwurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Vereinfache .
Schreibe als um.
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Step 6
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Step 7
Kritische Punkte zum auswerten.
Step 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Step 9
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Mutltipliziere mit .
Step 10
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Potenziere mit .
Mutltipliziere mit .
Die endgültige Lösung ist .
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Ersetze in dem Ausdruck die Variable durch .
Vereinfache das Ergebnis.
Potenziere mit .
Mutltipliziere mit .
Die endgültige Lösung ist .
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
ist ein lokales Minimum
Step 11