Gib eine Aufgabe ein ...
Algebra Beispiele
Step 1
Differenziere beide Seiten der Gleichung.
Step 2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Um die Kettenregel anzuwenden, ersetze durch .
Die Ableitung von nach ist .
Ersetze alle durch .
Schreibe als um.
Vereinfache.
Wende das Distributivgesetz an.
Mutltipliziere mit .
Stelle die Terme um.
Step 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Step 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Step 5
Vereinfache die linke Seite.
Stelle die Faktoren in um.
Addiere zu beiden Seiten der Gleichung.
Teile jeden Ausdruck in durch und vereinfache.
Teile jeden Ausdruck in durch .
Vereinfache die linke Seite.
Kürze den gemeinsamen Faktor von .
Kürze den gemeinsamen Faktor.
Forme den Ausdruck um.
Kürze den gemeinsamen Faktor von .
Kürze den gemeinsamen Faktor.
Forme den Ausdruck um.
Kürze den gemeinsamen Faktor von .
Kürze den gemeinsamen Faktor.
Dividiere durch .
Vereinfache die rechte Seite.
Kürze den gemeinsamen Faktor von .
Kürze den gemeinsamen Faktor.
Forme den Ausdruck um.
Separiere Brüche.
Wandle von nach um.
Wandle von nach um.
Step 6
Ersetze durch .