حساب المثلثات الأمثلة

الرسم البياني y=tan(pi/5x)
Step 1
أوجِد خطوط التقارب.
انقر لعرض المزيد من الخطوات...
لأي ، تظهر خطوط التقارب الرأسية عند ، حيث يمثل عددًا صحيحًا. استخدِم الفترة الأساسية لـ ، ، لإيجاد خطوط التقارب الرأسية لـ . وعيّن قيمة ما بين الأقواس لدالة المماس، ، لـ بحيث تصبح مساوية لـ لإيجاد موضع خط التقارب الرأسي لـ .
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
اضرب كلا المتعادلين في .
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
بسّط .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
بسّط .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
انقُل السالب الرئيسي في إلى بسط الكسر.
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اجمع و.
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
اضرب في .
انقُل السالب أمام الكسر.
عيّن قيمة ما في داخل الأقواس لدالة المماس بحيث تصبح مساوية لـ .
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
اضرب كلا المتعادلين في .
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
بسّط .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
بسّط .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اجمع و.
ستظهر الفترة الأساسية لـ عند ، حيث تكون و خطوط تقارب رأسية.
أوجِد الفترة لمعرفة مكان وجود خطوط التقارب الرأسية.
انقر لعرض المزيد من الخطوات...
تساوي تقريبًا وهو عدد موجب، لذا أزِل القيمة المطلقة
اضرب بسط الكسر في مقلوب القاسم.
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
تظهر خطوط التقارب الرأسية لـ عند و وكل من ، حيث يكون عددًا صحيحًا.
المماس له خطوط تقارب رأسية فقط.
لا توجد خطوط تقارب أفقية
لا توجد خطوط تقارب مائلة
خطوط التقارب الرأسية: حيث يمثل عددًا صحيحًا
لا توجد خطوط تقارب أفقية
لا توجد خطوط تقارب مائلة
خطوط التقارب الرأسية: حيث يمثل عددًا صحيحًا
Step 2
استخدِم الصيغة لإيجاد المتغيرات المُستخدمة لإيجاد السعة والفترة وإزاحة الطور والتحريك العمودي.
Step 3
بما أن الرسم البياني للدالة ليس به قيمة قصوى أو دنيا، إذن لا يمكن أن توجد قيمة للسعة.
السعة: لا يوجد
Step 4
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
يمكن حساب فترة الدالة باستخدام .
استبدِل بـ في القاعدة للفترة.
تساوي تقريبًا وهو عدد موجب، لذا أزِل القيمة المطلقة
اضرب بسط الكسر في مقلوب القاسم.
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
Step 5
أوجِد إزاحة الطور باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
يمكن حساب إزاحة الطور للدالة من .
إزاحة الطور:
استبدِل قيم و في المعادلة لإزاحة الطور.
إزاحة الطور:
اضرب بسط الكسر في مقلوب القاسم.
إزاحة الطور:
اضرب في .
إزاحة الطور:
إزاحة الطور:
Step 6
اسرِد خصائص الدالة المثلثية.
السعة: لا يوجد
الفترة:
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
Step 7
يمكن تمثيل الدالة المثلثية بيانيًا باستخدام السعة والفترة وإزاحة الطور والتحريك العمودي والنقاط.
خطوط التقارب الرأسية: حيث يمثل عددًا صحيحًا
السعة: لا يوجد
الفترة:
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
Step 8
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات