إدخال مسألة...
حساب المثلثات الأمثلة
Step 1
لأي ، تظهر خطوط التقارب الرأسية عند ، حيث يمثل عددًا صحيحًا. استخدِم الفترة الأساسية لـ ، ، لإيجاد خطوط التقارب الرأسية لـ . وعيّن قيمة ما بين الأقواس لدالة المماس، ، لـ بحيث تصبح مساوية لـ لإيجاد موضع خط التقارب الرأسي لـ .
اقسِم كل حد في على وبسّط.
اقسِم كل حد في على .
بسّط الطرف الأيسر.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
اضرب بسط الكسر في مقلوب القاسم.
اضرب .
اضرب في .
اضرب في .
عيّن قيمة ما في داخل الأقواس لدالة المماس بحيث تصبح مساوية لـ .
اقسِم كل حد في على وبسّط.
اقسِم كل حد في على .
بسّط الطرف الأيسر.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
اضرب بسط الكسر في مقلوب القاسم.
اضرب .
اضرب في .
اضرب في .
ستظهر الفترة الأساسية لـ عند ، حيث تكون و خطوط تقارب رأسية.
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
تظهر خطوط التقارب الرأسية لـ عند و وكل من ، حيث يكون عددًا صحيحًا.
المماس له خطوط تقارب رأسية فقط.
لا توجد خطوط تقارب أفقية
لا توجد خطوط تقارب مائلة
خطوط التقارب الرأسية: حيث يمثل عددًا صحيحًا
لا توجد خطوط تقارب أفقية
لا توجد خطوط تقارب مائلة
خطوط التقارب الرأسية: حيث يمثل عددًا صحيحًا
Step 2
استخدِم الصيغة لإيجاد المتغيرات المُستخدمة لإيجاد السعة والفترة وإزاحة الطور والتحريك العمودي.
Step 3
بما أن الرسم البياني للدالة ليس به قيمة قصوى أو دنيا، إذن لا يمكن أن توجد قيمة للسعة.
السعة: لا يوجد
Step 4
يمكن حساب فترة الدالة باستخدام .
استبدِل بـ في القاعدة للفترة.
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
Step 5
يمكن حساب إزاحة الطور للدالة من .
إزاحة الطور:
استبدِل قيم و في المعادلة لإزاحة الطور.
إزاحة الطور:
اقسِم على .
إزاحة الطور:
إزاحة الطور:
Step 6
اسرِد خصائص الدالة المثلثية.
السعة: لا يوجد
الفترة:
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
Step 7
يمكن تمثيل الدالة المثلثية بيانيًا باستخدام السعة والفترة وإزاحة الطور والتحريك العمودي والنقاط.
خطوط التقارب الرأسية: حيث يمثل عددًا صحيحًا
السعة: لا يوجد
الفترة:
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
Step 8