حساب المثلثات الأمثلة

الرسم البياني sin(theta)<0 , tan(theta)<0
,
Step 1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
القيمة الدقيقة لـ هي .
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
اطرح من .
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
يمكن حساب فترة الدالة باستخدام .
استبدِل بـ في القاعدة للفترة.
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
اقسِم على .
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
وحّد الإجابات.
، لأي عدد صحيح
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
انقر لعرض المزيد من الخطوات...
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
استبدِل بـ في المتباينة الأصلية.
الطرف الأيسر ليس أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
استبدِل بـ في المتباينة الأصلية.
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
خطأ
صحيحة
خطأ
صحيحة
يتكون الحل من جميع الفترات الصحيحة.
، لأي عدد صحيح
، لأي عدد صحيح
Step 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خُذ المماس العكسي لكلا المتعادلين لاستخراج من داخل المماس.
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
القيمة الدقيقة لـ هي .
دالة المماس موجبة في الربعين الأول والثالث. لإيجاد الحل الثاني، أضِف زاوية المرجع من لإيجاد الحل في الربع الرابع.
أضف و.
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
يمكن حساب فترة الدالة باستخدام .
استبدِل بـ في القاعدة للفترة.
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
اقسِم على .
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
وحّد الإجابات.
، لأي عدد صحيح
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
انقر لعرض المزيد من الخطوات...
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
استبدِل بـ في المتباينة الأصلية.
الطرف الأيسر ليس أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
خطأ
خطأ
بما أنه لا توجد أي أعداد واقعة ضمن الفترة، إذن لا يوجد حل لهذه المتباينة.
لا يوجد حل
لا يوجد حل
Step 3
عيّن النقاط على كل رسم بياني على نفس نظام الإحداثيات.
Step 4
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات