حساب المثلثات الأمثلة

الرسم البياني 2tan(x)
Step 1
أوجِد خطوط التقارب.
انقر لعرض المزيد من الخطوات...
لأي ، تظهر خطوط التقارب الرأسية عند ، حيث يمثل عددًا صحيحًا. استخدِم الفترة الأساسية لـ ، ، لإيجاد خطوط التقارب الرأسية لـ . وعيّن قيمة ما بين الأقواس لدالة المماس، ، لـ بحيث تصبح مساوية لـ لإيجاد موضع خط التقارب الرأسي لـ .
عيّن قيمة ما في داخل الأقواس لدالة المماس بحيث تصبح مساوية لـ .
ستظهر الفترة الأساسية لـ عند ، حيث تكون و خطوط تقارب رأسية.
أوجِد الفترة لمعرفة مكان وجود خطوط التقارب الرأسية.
انقر لعرض المزيد من الخطوات...
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
اقسِم على .
تظهر خطوط التقارب الرأسية لـ عند و وكل ، حيث يمثل عددًا صحيحًا.
لا توجد سوى خطوط تقارب رأسية لدوال المماس وظل التمام.
خطوط التقارب الرأسية: لأي عدد صحيح
لا توجد خطوط تقارب أفقية
لا توجد خطوط تقارب مائلة
خطوط التقارب الرأسية: لأي عدد صحيح
لا توجد خطوط تقارب أفقية
لا توجد خطوط تقارب مائلة
Step 2
استخدِم الصيغة لإيجاد المتغيرات المُستخدمة لإيجاد السعة والفترة وإزاحة الطور والتحريك العمودي.
Step 3
بما أن الرسم البياني للدالة ليس به قيمة قصوى أو دنيا، إذن لا يمكن أن توجد قيمة للسعة.
السعة: لا يوجد
Step 4
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
يمكن حساب فترة الدالة باستخدام .
استبدِل بـ في القاعدة للفترة.
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
اقسِم على .
Step 5
أوجِد إزاحة الطور باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
يمكن حساب إزاحة الطور للدالة من .
إزاحة الطور:
استبدِل قيم و في المعادلة لإزاحة الطور.
إزاحة الطور:
اقسِم على .
إزاحة الطور:
إزاحة الطور:
Step 6
اسرِد خصائص الدالة المثلثية.
السعة: لا يوجد
الفترة:
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
Step 7
يمكن تمثيل الدالة المثلثية بيانيًا باستخدام السعة والفترة وإزاحة الطور والتحريك العمودي والنقاط.
خطوط التقارب الرأسية: لأي عدد صحيح
السعة: لا يوجد
الفترة:
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
Step 8
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات