إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
Step 1
اكتب في صورة معادلة.
Step 2
بادِل المتغيرات.
Step 3
أعِد كتابة المعادلة في صورة .
اطرح من كلا المتعادلين.
اقسِم كل حد في على وبسّط.
اقسِم كل حد في على .
بسّط الطرف الأيسر.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
انقُل السالب أمام الكسر.
خُذ الجذر التربيعي لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
بسّط .
اجمع البسوط على القاسم المشترك.
أعِد كتابة بالصيغة .
اضرب في .
جمّع وبسّط القاسم.
اضرب في .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
أعِد كتابة بالصيغة .
استخدِم لكتابة في صورة .
طبّق قاعدة القوة واضرب الأُسس، .
اجمع و.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
احسِب قيمة الأُس.
اجمع باستخدام قاعدة ضرب الجذور.
أعِد ترتيب العوامل في .
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
Step 4
Replace with to show the final answer.
Step 5
نطاق المعكوس هو مدى الدالة الأصلية والعكس صحيح. أوجِد نطاق ومدى و وقارن بينهما.
أوجِد مدى .
المدى هو مجموعة جميع قيم الصالحة. استخدِم الرسم البياني لإيجاد المدى.
ترميز الفترة:
أوجِد نطاق .
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
أوجِد قيمة .
اقسِم كل حد في على وبسّط.
اقسِم كل حد في على .
بسّط الطرف الأيسر.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
اقسِم على .
أضِف إلى كلا طرفي المتباينة.
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
أوجِد نطاق .
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
بما أن نطاق هو مدى ومدى هو نطاق ، إذن هي معكوس .
Step 6