حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية y=x+1/x
Step 1
اكتب في صورة دالة.
Step 2
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
أعِد كتابة بالصيغة .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
أعِد ترتيب الحدود.
Step 3
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أعِد كتابة بالصيغة .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
طبّق قاعدة القوة واضرب الأُسس، .
اضرب في .
اضرب في .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
اطرح من .
اضرب في .
اضرب في .
أضف و.
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
بسّط.
انقر لعرض المزيد من الخطوات...
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
اجمع و.
أضف و.
Step 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
Step 5
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
أعِد كتابة بالصيغة .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
أعِد ترتيب الحدود.
المشتق الأول لـ بالنسبة إلى هو .
Step 6
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
اطرح من كلا المتعادلين.
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
اضرب كل حد في في .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
انقُل السالب الرئيسي في إلى بسط الكسر.
ألغِ العامل المشترك.
أعِد كتابة العبارة.
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
أعِد كتابة المعادلة في صورة .
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
اقسِم كل حد في على .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
اقسِم على .
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
اقسِم على .
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
أي جذر لـ هو .
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
Step 7
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
بسّط .
انقر لعرض المزيد من الخطوات...
أعِد كتابة بالصيغة .
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
زائد أو ناقص يساوي .
Step 8
النقاط الحرجة اللازم حساب قيمتها.
Step 9
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
Step 10
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اقسِم على .
Step 11
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
Step 12
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
اقسِم على .
أضف و.
الإجابة النهائية هي .
Step 13
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
Step 14
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
اقسِم على .
Step 15
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
Step 16
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
اقسِم على .
اطرح من .
الإجابة النهائية هي .
Step 17
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
هي نقطة قصوى محلية
Step 18
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات