حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة f(x)=x^2-3x
Step 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
المشتق الأول لـ بالنسبة إلى هو .
Step 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
أضف إلى كلا المتعادلين.
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
اقسِم كل حد في على .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
اقسِم على .
Step 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
Step 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
عوّض بقيمة التي تساوي .
بسّط.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
طبّق قاعدة الضرب على .
ارفع إلى القوة .
ارفع إلى القوة .
اضرب .
انقر لعرض المزيد من الخطوات...
اجمع و.
اضرب في .
انقُل السالب أمام الكسر.
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اجمع البسوط على القاسم المشترك.
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
اضرب في .
اطرح من .
انقُل السالب أمام الكسر.
اسرِد جميع النقاط.
Step 5
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات