حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص 1/(x^2)
Step 1
اكتب في صورة دالة.
Step 2
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
أعِد كتابة بالصيغة .
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
طبّق قاعدة القوة واضرب الأُسس، .
اضرب في .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بسّط.
انقر لعرض المزيد من الخطوات...
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
اجمع و.
انقُل السالب أمام الكسر.
المشتق الأول لـ بالنسبة إلى هو .
Step 3
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
Step 4
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
Step 5
أوجِد الموضع الذي يكون فيه المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خُذ الجذر التكعيبي لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
بسّط .
انقر لعرض المزيد من الخطوات...
أعِد كتابة بالصيغة .
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
Step 6
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
Step 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
اقسِم على .
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 8
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اقسِم على .
اضرب في .
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 9
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
Step 10
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات