حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de Second f(x)=x/(x^2-9)
Step 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
أضف و.
اضرب في .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
اطرح من .
Step 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
طبّق قاعدة القوة واضرب الأُسس، .
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
أضف و.
انقُل إلى يسار .
اضرب في .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
أعِد كتابة بالصيغة .
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
انقُل إلى يسار .
اضرب في .
اطرح من .
طبّق خاصية التوزيع.
بسّط.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
طبّق خاصية التوزيع.
بسّط.
انقر لعرض المزيد من الخطوات...
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
انقُل .
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
انقُل .
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
انقُل .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
انقُل .
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
اضرب في .
اضرب في .
أضف و.
أضف و.
أضف و.
اطرح من .
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أعِد كتابة بالصيغة .
لنفترض أن . استبدِل بجميع حالات حدوث .
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
استبدِل كافة حالات حدوث بـ .
أعِد كتابة بالصيغة .
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
أعِد كتابة بالصيغة .
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
طبّق قاعدة الضرب على .
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
Step 3
المشتق الثاني لـ بالنسبة إلى هو .
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات