حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص e^(6x)+e^(-x)
Step 1
اكتب في صورة دالة.
Step 2
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
استبدِل كافة حالات حدوث بـ .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
انقُل إلى يسار .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
استبدِل كافة حالات حدوث بـ .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
انقُل إلى يسار .
أعِد كتابة بالصيغة .
المشتق الأول لـ بالنسبة إلى هو .
Step 3
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
انقُل إلى المتعادل الأيمن بإضافتها إلى كلا الطرفين.
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
وسّع الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
أعِد كتابة بالصيغة .
وسّع بنقل خارج اللوغاريتم.
اللوغاريتم الطبيعي لـ يساوي .
اضرب في .
وسّع الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
وسّع بنقل خارج اللوغاريتم.
اللوغاريتم الطبيعي لـ يساوي .
اضرب في .
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
أضف إلى كلا المتعادلين.
أضف و.
اطرح من كلا المتعادلين.
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
اقسِم كل حد في على .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
انقُل السالب أمام الكسر.
Step 4
القيم التي تجعل المشتق مساويًا لـ هي .
Step 5
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
Step 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
اجمع و.
اضرب في .
الإجابة النهائية هي .
بسّط.
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
الإجابة النهائية هي .
بسّط.
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
Step 9
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات