إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
استخدِم لكتابة في صورة .
Step 2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
Step 3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
Step 4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
Step 5
اجمع و.
Step 6
اجمع البسوط على القاسم المشترك.
Step 7
اضرب في .
اطرح من .
Step 8
انقُل السالب أمام الكسر.
اجمع و.
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
Step 9
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
Step 10
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
Step 11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
Step 12
اضرب في .
Step 13
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
Step 14
أضف و.
اضرب في .
Step 15
طبّق خاصية التوزيع.
بسّط بَسْط الكسر.
بسّط كل حد.
ألغِ العامل المشترك لـ .
أخرِج العامل من .
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اجمع و.
انقُل إلى بسط الكسر باستخدام قاعدة الأُسس السالبة .
اضرب في بجمع الأُسس.
اضرب في .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
اكتب في صورة كسر ذي قاسم مشترك.
اجمع البسوط على القاسم المشترك.
اطرح من .
أعِد كتابة بالصيغة .
اطرح من .
بسّط بَسْط الكسر.
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
اجمع و.
اجمع البسوط على القاسم المشترك.
بسّط بَسْط الكسر.
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
اضرب في بجمع الأُسس.
انقُل .
استخدِم قاعدة القوة لتجميع الأُسس.
اجمع البسوط على القاسم المشترك.
أضف و.
اقسِم على .
بسّط .
اضرب بسط الكسر في مقلوب القاسم.
اضرب في .
انقُل إلى يسار .
أعِد ترتيب العوامل في .