إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
اكتب في صورة دالة.
Step 2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أوجِد المشتق الثاني.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
المشتق الثاني لـ بالنسبة إلى هو .
Step 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
اقسِم كل حد في على وبسّط.
اقسِم كل حد في على .
بسّط الطرف الأيسر.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
اقسِم على .
Step 4
عوّض بقيمة في لإيجاد قيمة .
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
ينتج عن رفع إلى أي قوة موجبة.
الإجابة النهائية هي .
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
Step 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
Step 6
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
اضرب في .
الإجابة النهائية هي .
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 7
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
اضرب في .
الإجابة النهائية هي .
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 8
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقطة الانقلاب في هذه الحالة هي .
Step 9