إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
أوجِد المشتق الأول.
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
بسّط العبارة.
أضف و.
اضرب في .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
اطرح من .
المشتق الأول لـ بالنسبة إلى هو .
Step 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
أوجِد قيمة في المعادلة.
أضف إلى كلا المتعادلين.
اقسِم كل حد في على وبسّط.
اقسِم كل حد في على .
بسّط الطرف الأيسر.
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
اقسِم على .
بسّط الطرف الأيمن.
اقسِم على .
خُذ الجذر التربيعي لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
بسّط .
أعِد كتابة بالصيغة .
أعِد كتابة بالصيغة .
أعِد كتابة بالصيغة .
أعِد كتابة بالصيغة .
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
انقُل إلى يسار .
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
Step 3
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
Step 4
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
أوجِد قيمة .
حلّل المتعادل الأيسر إلى عوامل.
أعِد كتابة بالصيغة .
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
طبّق قاعدة الضرب على .
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
عيّن قيمة بحيث تصبح مساوية لـ .
أوجِد قيمة في .
عيّن قيمة بحيث تصبح مساوية لـ .
اطرح من كلا المتعادلين.
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
عيّن قيمة بحيث تصبح مساوية لـ .
أوجِد قيمة في .
عيّن قيمة بحيث تصبح مساوية لـ .
أضف إلى كلا المتعادلين.
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
Step 5
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
Step 6
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط بَسْط الكسر.
ارفع إلى القوة .
اضرب في .
اطرح من .
بسّط القاسم.
ارفع إلى القوة .
اطرح من .
ارفع إلى القوة .
انقُل السالب أمام الكسر.
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 7
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط بَسْط الكسر.
ينتج عن رفع إلى أي قوة موجبة.
اضرب في .
اطرح من .
بسّط القاسم.
ينتج عن رفع إلى أي قوة موجبة.
اطرح من .
ارفع إلى القوة .
اختزِل العبارة بحذف العوامل المشتركة.
احذِف العامل المشترك لـ و.
أخرِج العامل من .
ألغِ العوامل المشتركة.
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
انقُل السالب أمام الكسر.
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 8
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط بَسْط الكسر.
ارفع إلى القوة .
اضرب في .
اطرح من .
بسّط القاسم.
ارفع إلى القوة .
اطرح من .
ارفع إلى القوة .
انقُل السالب أمام الكسر.
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 9
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تناقص خلال:
Step 10