إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة.
اضرب الأُسس في .
طبّق قاعدة القوة واضرب الأُسس، .
اضرب في .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اجمع الكسور.
اجمع و.
اجمع و.
أعِد ترتيب الحدود.
Step 2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
بسّط العبارة.
أضف و.
اضرب في .
اضرب في بجمع الأُسس.
انقُل .
اضرب في .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
اطرح من .
اجمع و.
بسّط.
طبّق خاصية التوزيع.
بسّط كل حد.
اضرب في .
اضرب في .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أعِد كتابة بالصيغة .
أخرِج العامل من .
أعِد كتابة بالصيغة .
انقُل السالب أمام الكسر.