حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de Second y=arctan(x^2)
Step 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
طبّق قاعدة القوة واضرب الأُسس، .
اضرب في .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
اجمع و.
اجمع و.
أعِد ترتيب الحدود.
Step 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
أضف و.
اضرب في .
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
انقُل .
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
اطرح من .
اجمع و.
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أعِد كتابة بالصيغة .
أخرِج العامل من .
أعِد كتابة بالصيغة .
انقُل السالب أمام الكسر.
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات