حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de Second f(x)=(1-cos(x))/(sin(x))
Step 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
مشتق بالنسبة إلى يساوي .
اضرب.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
مشتق بالنسبة إلى يساوي .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
أعِد كتابة بالصيغة .
اضرب .
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اضرب .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
انقُل .
طبّق متطابقة فيثاغورس.
Step 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
طبّق قاعدة القوة واضرب الأُسس، .
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
مشتق بالنسبة إلى يساوي .
اضرب.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
استبدِل كافة حالات حدوث بـ .
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
اضرب في .
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
مشتق بالنسبة إلى يساوي .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اضرب .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
Step 3
المشتق الثاني لـ بالنسبة إلى هو .
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات