حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص 1-2sin(x)
Step 1
اكتب في صورة دالة.
Step 2
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
مشتق بالنسبة إلى يساوي .
اطرح من .
المشتق الأول لـ بالنسبة إلى هو .
Step 3
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
اقسِم كل حد في على .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
اقسِم على .
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
القيمة الدقيقة لـ هي .
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
بسّط .
انقر لعرض المزيد من الخطوات...
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
اجمع و.
اجمع البسوط على القاسم المشترك.
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
اضرب في .
اطرح من .
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
يمكن حساب فترة الدالة باستخدام .
استبدِل بـ في القاعدة للفترة.
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
اقسِم على .
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
Step 4
القيم التي تجعل المشتق مساويًا لـ هي .
Step 5
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
Step 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
الإجابة النهائية هي .
بسّط.
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
الإجابة النهائية هي .
بسّط.
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تناقص خلال:
Step 9
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات