حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف x^2 اللوغاريتم الطبيعي لـ x
Step 1
اكتب في صورة دالة.
Step 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
اجمع و.
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اقسِم على .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أعِد ترتيب الحدود.
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اجمع و.
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اضرب في .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
اضرب في .
أضف و.
المشتق الثاني لـ بالنسبة إلى هو .
Step 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
اطرح من كلا المتعادلين.
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
اقسِم كل حد في على .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
انقُل السالب أمام الكسر.
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
أعِد كتابة المعادلة في صورة .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
Step 4
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
طبّق قاعدة الضرب على .
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
طبّق قاعدة القوة واضرب الأُسس، .
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
انقُل إلى بسط الكسر باستخدام قاعدة الأُسس السالبة .
وسّع بنقل خارج اللوغاريتم.
اللوغاريتم الطبيعي لـ يساوي .
اضرب في .
اضرب في .
انقُل إلى يسار .
الإجابة النهائية هي .
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
Step 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
Step 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
بسّط بنقل داخل اللوغاريتم.
ارفع إلى القوة .
الإجابة النهائية هي .
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
بسّط بنقل داخل اللوغاريتم.
ارفع إلى القوة .
الإجابة النهائية هي .
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 8
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقطة الانقلاب في هذه الحالة هي .
Step 9
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات