حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف ( اللوغاريتم الطبيعي لـ x)/x
Step 1
اكتب في صورة دالة.
Step 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
اجمع و.
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
طبّق قاعدة القوة واضرب الأُسس، .
اضرب في .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
اجمع و.
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اقسِم على .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
اضرب في .
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب .
انقر لعرض المزيد من الخطوات...
اضرب في .
بسّط بنقل داخل اللوغاريتم.
اطرح من .
أعِد كتابة بالصيغة .
أخرِج العامل من .
أخرِج العامل من .
انقُل السالب أمام الكسر.
المشتق الثاني لـ بالنسبة إلى هو .
Step 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
اطرح من كلا المتعادلين.
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
اقسِم كل حد في على .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
اقسِم على .
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
اقسِم على .
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
أعِد كتابة المعادلة في صورة .
خُذ الجذر التربيعي لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
بسّط .
انقر لعرض المزيد من الخطوات...
أخرِج عامل .
أخرِج الحدود من تحت الجذر.
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
Step 4
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
اضرب في .
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
اضرب في .
انقُل .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
استخدِم لكتابة في صورة .
طبّق قاعدة القوة واضرب الأُسس، .
اجمع و.
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
أعِد كتابة العبارة.
بسّط.
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
الإجابة النهائية هي .
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
ليس موجودًا في نطاق . ولا توجد نقطة انقلاب عند .
is not in the domain
حدد النقاط التي يمكن أن تكون نقاط انقلاب.
Step 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
Step 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
ارفع إلى القوة .
استبدِل بقيمة تقريبية.
لوغاريتم للأساس يساوي تقريبًا.
اضرب في .
اطرح من .
اقسِم على .
اضرب في .
الإجابة النهائية هي .
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
ارفع إلى القوة .
استبدِل بقيمة تقريبية.
لوغاريتم للأساس يساوي تقريبًا.
اضرب في .
اطرح من .
اقسِم على .
الإجابة النهائية هي .
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 8
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقطة الانقلاب في هذه الحالة هي .
Step 9
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات