إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بسّط العبارة.
اضرب في .
انقُل إلى يسار .
أعِد ترتيب الحدود.
Step 2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
استبدِل كافة حالات حدوث بـ .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
انقُل إلى يسار .
احسِب قيمة .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
استبدِل كافة حالات حدوث بـ .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
انقُل إلى يسار .
بسّط.
طبّق خاصية التوزيع.
جمّع الحدود.
اضرب في .
أضف و.
انقُل .
أضف و.
انقُل .
أعِد كتابة بالصيغة .
أضف و.