إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
أوجِد المشتق الأول.
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
اجمع و.
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
أوجِد المشتق الثاني.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة.
اجمع و.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
اجمع الكسور.
اضرب في .
اضرب في .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
المشتق الثاني لـ بالنسبة إلى هو .
Step 2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
أوجِد قيمة في المعادلة.
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
بسّط الطرف الأيمن.
القيمة الدقيقة لـ هي .
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
أوجِد قيمة .
اضرب كلا المتعادلين في .
بسّط كلا المتعادلين.
بسّط الطرف الأيسر.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
بسّط الطرف الأيمن.
اطرح من .
أوجِد فترة .
يمكن حساب فترة الدالة باستخدام .
استبدِل بـ في القاعدة للفترة.
تساوي تقريبًا وهو عدد موجب، لذا أزِل القيمة المطلقة
اضرب بسط الكسر في مقلوب القاسم.
اضرب في .
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
Step 3
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
Step 4
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
Step 5
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط بَسْط الكسر.
اقسِم على .
احسِب قيمة .
بسّط العبارة.
اقسِم على .
اضرب في .
الإجابة النهائية هي .
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 6
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط بَسْط الكسر.
اقسِم على .
احسِب قيمة .
بسّط العبارة.
اقسِم على .
اضرب في .
الإجابة النهائية هي .
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 7
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقطة الانقلاب في هذه الحالة هي .
Step 8