حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة y=x^3+x^2-5x-2
Step 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
المشتق الأول لـ بالنسبة إلى هو .
Step 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
أعِد كتابة في صورة زائد
طبّق خاصية التوزيع.
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
جمّع أول حدين وآخر حدين.
أخرِج العامل المشترك الأكبر من كل مجموعة.
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة بحيث تصبح مساوية لـ .
أضف إلى كلا المتعادلين.
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة بحيث تصبح مساوية لـ .
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
اطرح من كلا المتعادلين.
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
اقسِم كل حد في على .
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
انقُل السالب أمام الكسر.
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
Step 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
Step 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
عوّض بقيمة التي تساوي .
بسّط.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
العدد واحد مرفوع لأي قوة يساوي واحدًا.
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اضرب في .
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
أضف و.
اطرح من .
اطرح من .
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
عوّض بقيمة التي تساوي .
بسّط.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
طبّق قاعدة الضرب على .
طبّق قاعدة الضرب على .
ارفع إلى القوة .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
طبّق قاعدة الضرب على .
طبّق قاعدة الضرب على .
ارفع إلى القوة .
اضرب في .
ارفع إلى القوة .
ارفع إلى القوة .
اضرب .
انقر لعرض المزيد من الخطوات...
اضرب في .
اجمع و.
اضرب في .
أوجِد القاسم المشترك.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اضرب في .
اضرب في .
اكتب على هيئة كسر قاسمه .
اضرب في .
اضرب في .
أعِد ترتيب عوامل .
اضرب في .
اضرب في .
اجمع البسوط على القاسم المشترك.
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اضرب في .
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
أضف و.
أضف و.
اطرح من .
اسرِد جميع النقاط.
Step 5
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات