إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
أوجِد المشتق الأول.
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
احسِب قيمة .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
المشتق الأول لـ بالنسبة إلى هو .
Step 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
عيّن قيمة بحيث تصبح مساوية لـ .
أوجِد قيمة في .
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
بسّط .
أعِد كتابة بالصيغة .
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
زائد أو ناقص يساوي .
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
عيّن قيمة بحيث تصبح مساوية لـ .
أوجِد قيمة في .
اطرح من كلا المتعادلين.
اقسِم كل حد في على وبسّط.
اقسِم كل حد في على .
بسّط الطرف الأيسر.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
بسّط الطرف الأيمن.
انقُل السالب أمام الكسر.
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
Step 3
القيم التي تجعل المشتق مساويًا لـ هي .
Step 4
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
Step 5
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط كل حد.
ارفع إلى القوة .
اضرب في .
ارفع إلى القوة .
اضرب في .
أضف و.
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
Step 6
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط كل حد.
ارفع إلى القوة .
اضرب في .
ارفع إلى القوة .
اضرب في .
أضف و.
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 7
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط كل حد.
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اضرب في .
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اضرب في .
أضف و.
الإجابة النهائية هي .
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
Step 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
Step 9