حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=x^2e^x
Step 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بسّط.
انقر لعرض المزيد من الخطوات...
أعِد ترتيب الحدود.
أعِد ترتيب العوامل في .
Step 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
أضف و.
انقر لعرض المزيد من الخطوات...
انقُل .
أضف و.
أعِد ترتيب الحدود.
أعِد ترتيب العوامل في .
Step 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
Step 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بسّط.
انقر لعرض المزيد من الخطوات...
أعِد ترتيب الحدود.
أعِد ترتيب العوامل في .
المشتق الأول لـ بالنسبة إلى هو .
Step 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
أخرِج العامل من .
أخرِج العامل من .
أخرِج العامل من .
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
عيّن قيمة بحيث تصبح مساوية لـ .
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة بحيث تصبح مساوية لـ .
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
عيّن قيمة بحيث تصبح مساوية لـ .
اطرح من كلا المتعادلين.
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
Step 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
Step 7
النقاط الحرجة اللازم حساب قيمتها.
Step 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
Step 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
ينتج عن رفع إلى أي قوة موجبة.
أي شيء مرفوع إلى هو .
اضرب في .
اضرب في .
أي شيء مرفوع إلى هو .
اضرب في .
أي شيء مرفوع إلى هو .
اضرب في .
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
أضف و.
أضف و.
Step 10
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
Step 11
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
ينتج عن رفع إلى أي قوة موجبة.
أي شيء مرفوع إلى هو .
اضرب في .
الإجابة النهائية هي .
Step 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
Step 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
اجمع و.
اضرب في .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
اجمع و.
انقُل السالب أمام الكسر.
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
اجمع و.
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
اجمع البسوط على القاسم المشترك.
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
اطرح من .
أضف و.
انقُل السالب أمام الكسر.
Step 14
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
Step 15
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
اجمع و.
الإجابة النهائية هي .
Step 16
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
هي نقطة قصوى محلية
Step 17
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات