إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
Step 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بسّط.
طبّق خاصية التوزيع.
جمّع الحدود.
اجمع و.
اجمع و.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
اجمع و.
احذِف العامل المشترك لـ و.
أخرِج العامل من .
ألغِ العوامل المشتركة.
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اقسِم على .
Step 2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
أضف و.
Step 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
Step 4
أوجِد المشتق الأول.
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بسّط.
طبّق خاصية التوزيع.
جمّع الحدود.
اجمع و.
اجمع و.
ألغِ العامل المشترك لـ .
ألغِ العامل المشترك.
اقسِم على .
اجمع و.
احذِف العامل المشترك لـ و.
أخرِج العامل من .
ألغِ العوامل المشتركة.
أخرِج العامل من .
ألغِ العامل المشترك.
أعِد كتابة العبارة.
اقسِم على .
المشتق الأول لـ بالنسبة إلى هو .
Step 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
أضف إلى كلا المتعادلين.
خُذ الجذر الرابع لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
أي جذر لـ هو .
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
Step 6
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
Step 7
النقاط الحرجة اللازم حساب قيمتها.
Step 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
Step 9
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اضرب في .
Step 10
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
Step 11
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط بَسْط الكسر.
العدد واحد مرفوع لأي قوة يساوي واحدًا.
اضرب في .
اطرح من .
انقُل السالب أمام الكسر.
الإجابة النهائية هي .
Step 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
Step 13
ارفع إلى القوة .
اضرب في .
Step 14
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
Step 15
استبدِل المتغير بـ في العبارة.
بسّط النتيجة.
بسّط بَسْط الكسر.
ارفع إلى القوة .
اضرب في .
أضف و.
الإجابة النهائية هي .
Step 16
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
هي نقطة قصوى محلية
Step 17