الجبر الأمثلة

Encuentre la derivada de Fourth sin(x^2)
Step 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أعِد ترتيب عوامل .
Step 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
اضرب في .
Step 3
أوجِد المشتق الثالث.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
انقُل .
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
انقُل إلى يسار .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
اضرب في .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اطرح من .
أعِد ترتيب الحدود.
Step 4
أوجِد المشتق الرابع.
انقر لعرض المزيد من الخطوات...
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
اضرب في .
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
انقُل .
اضرب في .
انقر لعرض المزيد من الخطوات...
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
مشتق بالنسبة إلى يساوي .
استبدِل كافة حالات حدوث بـ .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
ارفع إلى القوة .
ارفع إلى القوة .
استخدِم قاعدة القوة لتجميع الأُسس.
أضف و.
انقُل إلى يسار .
اضرب في .
بسّط.
انقر لعرض المزيد من الخطوات...
طبّق خاصية التوزيع.
طبّق خاصية التوزيع.
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
اضرب في .
اضرب في .
اضرب في .
اطرح من .
انقر لعرض المزيد من الخطوات...
انقُل .
اطرح من .
ملفات تعريف الارتباط والخصوصية
يستخدم هذا الموقع الإلكتروني ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة في أثناء استخدامك لموقعنا.
مزيد من المعلومات