输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2
使用除法定则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.3
求微分。
解题步骤 1.3.1
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.2
将 移到 的左侧。
解题步骤 1.3.3
根据加法法则, 对 的导数是 。
解题步骤 1.3.4
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.5
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.3.6
合并分数。
解题步骤 1.3.6.1
将 和 相加。
解题步骤 1.3.6.2
将 乘以 。
解题步骤 1.3.6.3
组合 和 。
解题步骤 1.4
化简。
解题步骤 1.4.1
运用分配律。
解题步骤 1.4.2
运用分配律。
解题步骤 1.4.3
运用分配律。
解题步骤 1.4.4
化简分子。
解题步骤 1.4.4.1
化简每一项。
解题步骤 1.4.4.1.1
通过指数相加将 乘以 。
解题步骤 1.4.4.1.1.1
移动 。
解题步骤 1.4.4.1.1.2
将 乘以 。
解题步骤 1.4.4.1.2
将 乘以 。
解题步骤 1.4.4.1.3
将 乘以 。
解题步骤 1.4.4.1.4
将 乘以 。
解题步骤 1.4.4.1.5
将 乘以 。
解题步骤 1.4.4.2
从 中减去 。
解题步骤 1.4.5
从 中分解出因数 。
解题步骤 1.4.5.1
从 中分解出因数 。
解题步骤 1.4.5.2
从 中分解出因数 。
解题步骤 1.4.5.3
从 中分解出因数 。
解题步骤 2
解题步骤 2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.2
使用除法定则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.3
将 中的指数相乘。
解题步骤 2.3.1
运用幂法则并将指数相乘,。
解题步骤 2.3.2
将 乘以 。
解题步骤 2.4
使用乘积法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.5
求微分。
解题步骤 2.5.1
根据加法法则, 对 的导数是 。
解题步骤 2.5.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.5.3
因为 对于 是常数,所以 对 的导数为 。
解题步骤 2.5.4
化简表达式。
解题步骤 2.5.4.1
将 和 相加。
解题步骤 2.5.4.2
将 乘以 。
解题步骤 2.5.5
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.5.6
通过加上各项进行化简。
解题步骤 2.5.6.1
将 乘以 。
解题步骤 2.5.6.2
将 和 相加。
解题步骤 2.6
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.6.1
要使用链式法则,请将 设为 。
解题步骤 2.6.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.6.3
使用 替换所有出现的 。
解题步骤 2.7
通过提取公因式进行化简。
解题步骤 2.7.1
将 乘以 。
解题步骤 2.7.2
从 中分解出因数 。
解题步骤 2.7.2.1
从 中分解出因数 。
解题步骤 2.7.2.2
从 中分解出因数 。
解题步骤 2.7.2.3
从 中分解出因数 。
解题步骤 2.8
约去公因数。
解题步骤 2.8.1
从 中分解出因数 。
解题步骤 2.8.2
约去公因数。
解题步骤 2.8.3
重写表达式。
解题步骤 2.9
根据加法法则, 对 的导数是 。
解题步骤 2.10
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.11
因为 对于 是常数,所以 对 的导数为 。
解题步骤 2.12
合并分数。
解题步骤 2.12.1
将 和 相加。
解题步骤 2.12.2
将 乘以 。
解题步骤 2.12.3
组合 和 。
解题步骤 2.13
化简。
解题步骤 2.13.1
运用分配律。
解题步骤 2.13.2
运用分配律。
解题步骤 2.13.3
化简分子。
解题步骤 2.13.3.1
化简每一项。
解题步骤 2.13.3.1.1
使用 FOIL 方法展开 。
解题步骤 2.13.3.1.1.1
运用分配律。
解题步骤 2.13.3.1.1.2
运用分配律。
解题步骤 2.13.3.1.1.3
运用分配律。
解题步骤 2.13.3.1.2
化简并合并同类项。
解题步骤 2.13.3.1.2.1
化简每一项。
解题步骤 2.13.3.1.2.1.1
使用乘法的交换性质重写。
解题步骤 2.13.3.1.2.1.2
通过指数相加将 乘以 。
解题步骤 2.13.3.1.2.1.2.1
移动 。
解题步骤 2.13.3.1.2.1.2.2
将 乘以 。
解题步骤 2.13.3.1.2.1.3
将 移到 的左侧。
解题步骤 2.13.3.1.2.1.4
将 乘以 。
解题步骤 2.13.3.1.2.1.5
将 乘以 。
解题步骤 2.13.3.1.2.2
将 和 相加。
解题步骤 2.13.3.1.3
运用分配律。
解题步骤 2.13.3.1.4
化简。
解题步骤 2.13.3.1.4.1
将 乘以 。
解题步骤 2.13.3.1.4.2
将 乘以 。
解题步骤 2.13.3.1.4.3
将 乘以 。
解题步骤 2.13.3.1.5
通过指数相加将 乘以 。
解题步骤 2.13.3.1.5.1
移动 。
解题步骤 2.13.3.1.5.2
将 乘以 。
解题步骤 2.13.3.1.6
将 乘以 。
解题步骤 2.13.3.1.7
将 乘以 。
解题步骤 2.13.3.1.8
将 乘以 。
解题步骤 2.13.3.2
合并 中相反的项。
解题步骤 2.13.3.2.1
从 中减去 。
解题步骤 2.13.3.2.2
将 和 相加。
解题步骤 2.13.3.2.3
从 中减去 。
解题步骤 2.13.3.2.4
将 和 相加。