输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
根据加法法则, 对 的导数是 。
解题步骤 1.2
计算 。
解题步骤 1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.3
将 乘以 。
解题步骤 1.3
计算 。
解题步骤 1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.3
将 移到 的左侧。
解题步骤 1.4
计算 。
解题步骤 1.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.4.3
将 移到 的左侧。
解题步骤 1.5
计算 。
解题步骤 1.5.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.5.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.5.3
将 乘以 。
解题步骤 1.6
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.7
化简。
解题步骤 1.7.1
将 和 相加。
解题步骤 1.7.2
重新排序项。
解题步骤 2
解题步骤 2.1
根据加法法则, 对 的导数是 。
解题步骤 2.2
计算 。
解题步骤 2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.2.3
将 乘以 。
解题步骤 2.3
因为 对于 是常数,所以 对 的导数为 。
解题步骤 2.4
计算 。
解题步骤 2.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.4.3
将 乘以 。
解题步骤 2.5
计算 。
解题步骤 2.5.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.5.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.5.3
将 乘以 。
解题步骤 2.6
化简。
解题步骤 2.6.1
将 和 相加。
解题步骤 2.6.2
重新排序项。
解题步骤 3
解题步骤 3.1
根据加法法则, 对 的导数是 。
解题步骤 3.2
计算 。
解题步骤 3.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3.2.3
将 乘以 。
解题步骤 3.3
因为 对于 是常数,所以 对 的导数为 。
解题步骤 3.4
计算 。
解题步骤 3.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 3.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 3.4.3
将 乘以 。
解题步骤 3.5
化简。
解题步骤 3.5.1
将 和 相加。
解题步骤 3.5.2
重新排序项。